
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 08: Type Classes
o Review: What is a type class?
o Basic Type Classes: Eq, Ord, Enum, Integral, Show, Read, Enum,

Functor
Next time: an extended example of creating your own type classes.
Reading: Hutton Ch. 3 & 8.1-8.5; Learn you a Haskell... also has some
nice material on type classes (link on class web site)!

NOTICE: We are merging discussions B2 and A4; if you are in B2,
please go to KCB 107 to meet with A4 from now on!

Type Classes and Overloading
Recall:

A type is a set of related values and a set of functions involving that type.

A type class is a set of types that share some overloaded functions.

A type is an instance of a type class if
o It implements the functions defining the class, and
o It is defined as such by an instance declaration or
is derived by Haskell (more on this in a bit).

Example: both Bool and Integer are instances of Eq, defined by operators == and /=:

Reading: Hutton Ch. 3.8, 3.9, 8.5
Hutton Appendix B

Eq: == /=

Bool

False True

&& || not

== /=

Integer

...,-1,0, 1,..

+ - * div mod

== /=

Main> False == True
False

Main> False /= False
False

Main> 4 == 8
False

Main> 2 /= 4
True

Type Classes and Overloading
The type class Ord contains those types that can be totally ordered and compared
using the standard relational operators:

(<) :: Ord a => a -> a -> Bool

(>) :: Ord a => a -> a -> Bool

(<=) :: Ord a => a -> a -> Bool

(<=) :: Ord a => a -> a -> Bool

min :: Ord a => a -> a -> a

max :: Ord a => a -> a -> a

Reading: Hutton Ch. 3.8, 3.9, 8.5

A class constraint on a
type variable restricts the
types to those that are
instances of the class.

It is a kind of restricted
polymorphism, similar to
generic types in Java that
implement some interface:

public static <T extends Comparable<T>> int compare(T t1, T t2){
return t1.compareTo(t2);

}

Type Classes and Overloading

Every instance of Ord is an instance of Eq, i.e., Ord ⊆ Eq, which is similar to inheritance
in Java and object-oriented languages:

Reading: Hutton Ch. 3.8, 3.9, 8.5

Eq: == /=

Ord: < > <= >= min max

Eq

Ord

class Eq a => Ord a where
.....

Type Classes and Overloading
Bool, Char, Strings, lists and tuples, and all the numeric types are instances of Ord:

Main> False < True
True
Main> 3 < 6
True
Main> 4.5 == 4.5
True
Main> [2,3] == [2,3]
True
Main> [1,2,3] < [1,3]
True
Main> [1,2,3] < [1,2,3,4]
True
Main> (2,3) >= (2,4)
False
Main> "Hi" < "Hi Folks!"
True
Main> max "hi" "there"
"there"

Reading: Hutton Ch. 3.8, 3.9, 8.5

Main> [(2,"hi"),(5,"there")] <
[(2,"hi"),(5,"folks")]

False

Relational tests on tuples and lists is
lexicographic and recursive:

Type Classes and Overloading
Enum – enumerable types

The Enum class contains types which can be put into 1-to-1 correspondence with the integers:

class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,n'..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]

The important thing about the Enum class is the convenient syntax shown in the comments,
which provides functionality similar to Python's range(..) function:

Main> [3..7]
[3,4,5,6,7]
Main> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"

Reading: Hutton Ch. 3.8, 3.9, 8.5

Main> [1,3..20]
[1,3,5,7,9,11,13,15,17,19]
Main> [1..] -- infinite!
[1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,2
4

To make your own data type an
instance of Enum, you just have to
define toEnum and fromEnum.

Type Classes and Overloading
Num – numeric types

The Num class contains numeric values, and consists of the following overloaded operators:

(+) :: Num a => a -> a -> a

(*) :: Num a => a -> a -> a

(-) :: Num a => a -> a -> a

negate :: Num a => a -> a

abs :: Num a => a -> a

signum :: Num a => a -> a

Hm... where is division?

Reading: Hutton Ch. 3.8, 3.9, 8.5

Type Classes and Overloading
Integral – integer types

These are the instances of Num whose values are integers, and support integer
division and modulus:

div :: Integral a => a -> a -> a

mod :: Integral a => a -> a -> a

Main> div 5 3
1
Main> 5 `div` 3
1
Main> mod 10 4
2
Main> 10 `mod` 4
2

Reading: Hutton Ch. 3.8, 3.9, 8.5

Note that mod and div are prefix functions, to
turn any function into infix, use back-quotes.

Type Classes and Overloading
Fractional – floating-point types

These are the instances of Num whose values are floating point, and support
floating-point division and reciprocation:

(/) :: Fractional a => a -> a -> a

recip :: Fractional a => a -> a

Main> 4.0 / 2.2
1.8181818181818181
Main> recip 5
0.2
Main> 4 / 2
2.0
Main> 5 / 2
2.5
Main> 5 / 2.2
2.2727272727272725

Reading: Hutton Ch. 3.8, 3.9, 8.5

The symbols for integers are overloaded, so
there is no ”type-coercion” from integer to float
here. The values are already fractional!

Type Classes and Overloading
Overview of type classes so far:

Reading: Hutton Ch. 3.8, 3.9, 8.5

All Types
* -> * (functions) IO() Functor Monad

Eq

Ord

== /=

< > <= => max min

Enum

toEnum fromEnum [n .. m]

Integral

Integer Int

Bool
True False
&& || not

+ * - negate abs signum
div mod rem

Fractional

[]
: head
tail

(,)
fst snd

(,,) ...

Float Double

/ recip

Type Classes and Overloading
Practical Advice on using Numeric types in Haskell (for this course)

Use only Integer and Double (or Rational) unless there is a good reason.

Remember that ordinary integer constants (3, 4, (-9)) are overloaded and can be
used in floating-point contexts:

Main> :t (/)
(/) :: Fractional a => a -> a -> a
Main> 3 / 4
0.75
Main> incr :: Integer -> Integer ; incr x = x + 1
Main> :t incr
incr :: Integer -> Integer
Main> (incr 3) / 4

<interactive>:21:1: error:
• No instance for (Fractional Integer) arising from a use of ‘/’
• In the expression: (incr 3) / 4
In an equation for ‘it’: it = (incr 3) / 4

Reading: Hutton Ch. 3.8, 3.9, 8.5

Type Classes and Overloading
Practical Advice on using Numeric types in Haskell (for this course)

Use fromIntegral to convert an Integer (or Int) expression into a Fractional type
to use in floating-point operations:

Main> :t incr
incr :: Integer -> Integer
Main> (incr 3) / 4

<interactive>:21:1: error: etc.

Main> (fromIntegral (incr 3)) / 6
0.6666666666666666

Use truncate, ceiling, and round to convert float-point into Integral types:

Main> truncate 3.4
3
Main> ceiling 3.4
4
Main> round 3.4
3

Reading: Hutton Ch. 3.8, 3.9, 8.5

Type Classes and Overloading
Show – types that have a String representation for printing

Show has a single method which converts its input to a Strint:

show :: Show a => a -> String -- String == [Char]

Main> show 6
"6"
Main> show 5.6
"5.6"
Main> show True
"True"
Main> show [2,3,4]
"[2,3,4]"
Main> show (3,'a',True)
"(3,'a',True)”
Main> show 'a'
"'a'"
Main> show "hi there"
"\"hi there\""

Reading: Hutton Ch. 3.8, 3.9, 8.5

All the basic Haskell types are instances of Show, but
remember that function types are never in SHOW:

*Main> incr x = x+1
*Main> incr

<interactive>:67:1: error:
• No instance for (Show (Integer -> Integer))

arising from a use of ‘print’
(maybe you haven't applied a function to

enough arguments?)
• In a stmt of an interactive GHCi command:

print it

Type Classes and Overloading
Read – types that have a String representation which can be converted into the actual
type.

Read has a single method which converts a String into a type:

show :: Read a => String -> a -- String == [Char]

However, because of overloaded symbols, you will need to specify what type to read into:

Main> read "5"
*** Exception: Prelude.read: no parse

Main> read "5" :: Integer
5

Main> read "5" :: Double
5.0

Reading: Hutton Ch. 3.8, 3.9, 8.5

Type annotations can be added to any
expression if needed to help Haskell
figure out the type:

Main> x = (4::Float)/4.45
Main> x
0.8988764
Main> :t x
x :: Float

So far all our type classes have been with basic (non-function) data.

How do we make all this higher-order?

Let’s examine the Functor type class, which provides for map-like functions.
Recall that map has the type

map :: (a -> b) -> [a] -> [b]

We would like to provide this kind of functionality for arbitrary data types, not
just lists. For example, we’d like to map over Maybe or trees or

But what is the type of a map over an arbitrary data type? For example,
over a Maybe it would have to be

map :: (a -> b) -> Maybe a -> Maybe b

This would allow us to apply a function inside a Maybe.

Type Classes: Functors

This is the purpose of the Functor type class, which is defined as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

This is an example of a type class which doesn’t provide any implementation, just
requires that any instance must provide an implementation of fmap.

What is f in this declaration? It seems to be a type constructor, since it takes an
argument: f a

In the type classes defined so far, the type variable stood for concrete data types
such as Int or Bool. Now f is a type constructor which itself takes a single
type parameter a.

Type Classes: Functors

class Functor f where
fmap :: (a -> b) -> f a -> f b

To make a type an instance of the Functor data type, we need to declare it as an
instance:

instance Functor [] where
fmap = map

Notice the [] ; you might think we would write [a], but that is a concrete type,
and [] is provided as a type constructor.

Now fmap works the same as map:

Main> fmap (*2) [1..3]
[2,4,6]
Main> map (*2) [1..3]
[2,4,6]

Type Classes: Functors

class Functor f where
fmap :: (a -> b) -> f a -> f b

To create a map on Maybe types, we can do this:

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

Notice carefully that we did not say

instance Functor (Maybe a) where

Functor wants a type constructor, not a type!

Type Classes: Functors

class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

Main> fmap (++ " Folks!") (Just ”Hi there “)
Just ”Hi there Folks!"
Main> fmap length (Just ”Hi there!“)
Just 9
Main> fmap (++ " Folks!") Nothing
Nothing
Main> fmap (*2) (Just 200)
Just 400
Main> fmap (*2) Nothing
Nothing

Type Classes: Functors

class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor Tree where
fmap f Null = Null
fmap f (Node left x right)

= Node (fmap f left) (f x) (fmap f right)

Main> fmap (*2) Null
Null
Main> (foldr treeInsert Null [5,7,3,12])
Node (Node Null 3 Null) 5 (Node Null 7 (Node Null 12 Null))

Main> fmap (*2) (foldr treeInsert Null [5,7,3,2,1,7])
Node (Node Null 6 Null) 10 (Node Null 14 (Node Null 24 Null))

Type Classes: Functors

Class and Instance Declarations
A new type class can be declared using Haskell’s class declaration; in fact, if you check
out the Prelude (Hutton, Appendix B), you will see declarations of the standard classes
discussed last time, starting with:

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

This means that for a type a to be an instance of the class Eq, it must have equality and
inequality operators with the appropriate types.

Note that this assumes you will define ==, and then /= is defined from ==.

This material is taken
directly from Hutton Ch. 8.5

Class and Instance Declarations
If you want to make a type an instance of Eq, you use an instance declaration, and provide
implementations of the == operator (since /= is defined by default for the class Eq):

instance Eq Bool where
False == False = True
True == True = True
_ == _ = False

But you can also override (substitute for) the default operators/functions.

instance Eq Bool where
False == False = True
True == True = True
_ == _ = False

False /= False = False
True /= True = False
_ /= _ = True

Reading: Hutton Ch. 8.5

Class and Instance Declarations
Classes can also be extended. For example, Ord is declared in the Prelude to extend Eq:

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

min x y | x <= y = x
| otherwise = y otherwise evals to False

max x y | x <= y = y
| otherwise = x

For a type to be an instance of Ord it must be an instance of Eq and also give implementations
of the 6 operators shown above; but since default definitions for 2 of them are already given ,
you only need to give the missing 4:

instance Ord Bool where
False < True = True
_ < _ = False

b <= c = (b < c) || (b == c)
b > c = c < b
b >= c = c <= b

Reading: Hutton Ch. 8.5

Class and Instance Declarations
Derived Instances

When you define a new class, you want to avoid having to define operators/functions already defined
somewhere else, so you make it an instance of built-in or already-defined classes, and thereby inherit the
operators/functions already defined elsewhere.

The deriving mechanism allows you to do this in a simple way. For example, in the Prelude, the type
Bool is actually defined by:

data Bool = False | True deriving (Eq, Ord, Show, Read)

Note: When you do this, any component types used in your data declaration must already have these
types:

data Shape = Circle Float | Rect Float Float deriving (Eq, Show)

Float must already be an instance of Eq and Show

data Maybe a = Nothing | Just a deriving (Eq, Show)

Whatever type you instantiate for a must be an instance of the classes Eq and Show.

Reading: Hutton Ch. 8.5

